11 research outputs found

    Funkční charakterizace rostlinných izoforem EXO70 podjednotky komplexu exocyst a mechanizmů jejich cílení na membrány

    Get PDF
    Souhrn Váčkový poutací komplex exocyst patří mezi hlavní regulátory buněčné polarity eukaryot. Tento proteinový komplex propojuje sekretorické váčky s plazmatickou membránou a reguluje vznik cis SNARE komplexu, jehož formování pohání fúzi membrány váčku s cílovou membránou. Výzkum funkce komplexu exocyst u kvasinkových a savčích buněk ukázal, že dvě z jeho osmi podjednotek, SEC3 a EXO70, poutají komplex k plazmatické membráně díky přímým interakcím se specifickými proteiny a membránovými fosfolipidy. Podjednotka exocystu EXO70 je v genomech krytosemenných rostlin kódována velkým počtem paralogů, v případě modelových rostlin huseníčku a tabáku se jedná o více než 20 genů. Rozdílné izoformy EXO70 pravděpodobně tvoří součást funkčně odlišných typů komplexu exocyst a regulují jejich zacílení do rozličných membránových domén, jelikož specifické interakce periferních membránových proteinů s různými fosfolipidy obecně přispívají k nasměrování proteinů do cílových organel a membránových domén. Tato práce se zaměřuje na funkci specifických interakcí proteinů a lipidů v rámci regulace buněčné polarity u rostlin a přispívá k objasnění rozmanitosti izoforem podjednotky exocystu EXO70 v rostlinných buňkách. Úvodní přehledné články přinášejí recentní shrnutí souhry proteinů a lipidů v ustálení membránových domén...Vesicle tethering complex exocyst is one of the key regulators of the cell polarity and morphogenesis in eukaryotes. The complex interacts with the secretory vesicle, as well as plasma membrane, and facilitates formation of cis SNARE complex leading into fusion of the vesicle with target destination. Two of the eight exocyst subunits, the SEC3 and EXO70 are known to bind plasma membrane via protein and lipid interactors in Opisthokont model organisms. Genomes of angiosperm plants encode a surprisingly wide repertoire of EXO70 isoforms with over 20 present in both Arabidopsis and diploid tobacco genome. It has been proposed that different EXO70 isoforms would form parts of functionally distinct subtypes of the plant exocyst complex driving membrane trafficking to various membrane domains. Specific interactions of peripheral membrane proteins with particular membrane phospholipids largely contribute to targeting of cellular components to subcellular compartments and membrane domains. This thesis focuses on role of protein-lipid interactions in regulation of plant cell polarity and contributes to functional analysis of the plant EXO70 family diversity. We introduce the topic with the theoretical reviews summarizing role of protein-lipid interactions in establishing plant cell membrane domains at...Department of Experimental Plant BiologyKatedra experimentální biologie rostlinFaculty of SciencePřírodovědecká fakult

    Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana

    Get PDF
    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering

    Funkční charakterizace podjednotky Sec5 komplexu exocyst u rostlin.

    No full text
    Exocyst is a protein complex involved in tethering of secretory vesicles to cytoplasmic membrane before SNARE-mediated fusion event. Its presence and function in secretory pathway has been confirmed in yeasts, animals and plants. This thesis describes some properties of Sec5, one of the exocyst subunits, in plant model Arabidopsis thaliana. Microscopic methods, including VAEM/TIRF microscopy, were used to study subcellular localization and dynamics of Sec5-GFP fusion protein. Sec5 is cytoplasmic protein that also localizes to cytoplasmic membrane, particulary in cells with high secretory activity. It strongly localizes to maturating cell plates during late cytokinesis and its localization to cytoplasmic membrane partially depends on actin cytoskeleton. Generally, obtained results are in agreement with corresponding observations of behavior of other exocyst subunits in plant cells, suggesting, that Sec5 executes its function as part of the exocyst complex

    Funkční charakterizace podjednotky Sec5 komplexu exocyst u rostlin.

    No full text
    Exocyst is a protein complex involved in tethering of secretory vesicles to cytoplasmic membrane before SNARE-mediated fusion event. Its presence and function in secretory pathway has been confirmed in yeasts, animals and plants. This thesis describes some properties of Sec5, one of the exocyst subunits, in plant model Arabidopsis thaliana. Microscopic methods, including VAEM/TIRF microscopy, were used to study subcellular localization and dynamics of Sec5-GFP fusion protein. Sec5 is cytoplasmic protein that also localizes to cytoplasmic membrane, particulary in cells with high secretory activity. It strongly localizes to maturating cell plates during late cytokinesis and its localization to cytoplasmic membrane partially depends on actin cytoskeleton. Generally, obtained results are in agreement with corresponding observations of behavior of other exocyst subunits in plant cells, suggesting, that Sec5 executes its function as part of the exocyst complex

    Lokalizace a dynamika Sec5 podjednotky komplexu exocyst v rostlinných buňkách

    No full text
    Exocyst je proteinový complex hrající roli v sekretorické dráze eukaryotických buněk. K plasmatické membráně připoutává váčky, které následně s membránou splynou díky aktivitě SNARE proteinů. V současnosti je jeho funkce studována u kvasinek, živočichů, ale i u rostlin. Tato práce se zabývá studiem podjednotky komplexu Sec5 u modelového rostlinného organismu Arabidopsis thaliana. Lokalizace a dynamika tohoto proteinu značeného fluorescenčním proteinem GFP byla studováne na vnitrobuněčné úrovni pomocí mikroskopie, včetně metody VAEM/TIRF. Sec5 je protein lokalizován v cytoplasmě buněk kořene. Protein se také vyskytuje na cytoplasmatické membráně buněk s vysokou sekreční aktivitou a ve zrajících přepážkách v pozdějších fázích buněčného dělení. Doplňování proteinu na membránu částečně závisí na aktinovém cytoskeletu. Závěry práce se shodují s poznatky o dalších podjednotkách komplexu exocyst organismu Arabidopsis thaliana, které byly získány podobnými metodami. Práce přináší výsledky, které spolu s předchozími poukazují na funkci proteinu Sec5 v rámci komplexu exocyst.Exocyst is a protein complex involved in tethering of secretory vesicles to cytoplasmic membrane before SNARE-mediated fusion event. Its presence and function in secretory pathway has been confirmed in yeasts, animals and plants. This thesis describes some properties of Sec5, one of the exocyst subunits, in plant model Arabidopsis thaliana. Microscopic methods, including VAEM/TIRF microscopy, were used to study subcellular localization and dynamics of Sec5-GFP fusion protein. Sec5 is cytoplasmic protein that also localizes to cytoplasmic membrane, particulary in cells with high secretory activity. It strongly localizes to maturating cell plates during late cytokinesis and its localization to cytoplasmic membrane partially depends on actin cytoskeleton. Generally, obtained results are in agreement with corresponding observations of behavior of other exocyst subunits in plant cells, suggesting, that Sec5 executes its function as part of the exocyst complex.Katedra buněčné biologieDepartment of Cell BiologyPřírodovědecká fakultaFaculty of Scienc

    Functional characterization of plant EXO70 exocyst subunit isoforms and their membrane targeting mechanisms

    No full text
    Vesicle tethering complex exocyst is one of the key regulators of the cell polarity and morphogenesis in eukaryotes. The complex interacts with the secretory vesicle, as well as plasma membrane, and facilitates formation of cis SNARE complex leading into fusion of the vesicle with target destination. Two of the eight exocyst subunits, the SEC3 and EXO70 are known to bind plasma membrane via protein and lipid interactors in Opisthokont model organisms. Genomes of angiosperm plants encode a surprisingly wide repertoire of EXO70 isoforms with over 20 present in both Arabidopsis and diploid tobacco genome. It has been proposed that different EXO70 isoforms would form parts of functionally distinct subtypes of the plant exocyst complex driving membrane trafficking to various membrane domains. Specific interactions of peripheral membrane proteins with particular membrane phospholipids largely contribute to targeting of cellular components to subcellular compartments and membrane domains. This thesis focuses on role of protein-lipid interactions in regulation of plant cell polarity and contributes to functional analysis of the plant EXO70 family diversity. We introduce the topic with the theoretical reviews summarizing role of protein-lipid interactions in establishing plant cell membrane domains at..

    Wnt signaling in determination and patterning of cnidarian primary body axis

    No full text
    Department of Cell BiologyKatedra buněčné biologieFaculty of SciencePřírodovědecká fakult

    Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells

    Get PDF
    Anionic phospholipids represent only minor fraction of cell membranes lipids but they are critically important for many membrane-related processes, including membrane identity, charge, shape, the generation of second messengers and the recruitment of peripheral proteins. The main anionic phospholipids of the plasma membrane are phosphoinositides phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 4,5-bisphosphate (PI4,5P 2), phosphatidylserine (PS), and phosphatidic acid (PA). Recent insights in the understanding of the nature of protein-phospholipid interactions enabled the design of genetically-encoded fluorescent molecular probes that can interact with various phospholipids in a specific manner allowing their imaging in live cells. Here, we describe the use of transiently transformed plant cells to study phospholipid-dependent membrane recruitment
    corecore